多路独立供电的半桥变换器的设计

分享到:

  引言

  随着电力电子技术的发展,电源技术被广泛应用于各个行业。对电源的要求也各有不同。本文介绍了一种功率较大,多路输出(20路及以上)并且相互独立的开关电源。

  设计采用了AC/DC/AC/DC变换方案。一次整流后的直流电压,经过有源功率因数校正环节以提高系统的功率因数,再经半桥变换电路逆变后,由高频变压器隔离降压,最后整流输出直流电压。系统的主要环节为有源功率因数校正电路、DC/DC电路、功率因数校正电路、PWM控制电路和保护电路等。采用UC3854A/B控制芯片组成功率因数校正电路来提高功率因数,用新型的芯片UC3825作为控制芯片来代替SG3525,不仅外围电路简单,而且具有有容差过压限流功能,还采用了新型IR2304作为驱动芯片,动态响应快,且自带死区,防止半桥上下管直通。

  1 有源功率因数校正电路

  为了提高系统的功率因数,整流环节不能采用二极管整流,采用了UC3854A/B控制芯片组成功率因数校正电路。UC3854A/BUnitrode公司一种新的高功率因数校正器集成控制电路芯片,是在UC3854基础上的改进,其特点是采用平均电流控制,功率因数接近1,高带宽,限制电网电流失真≤3%。图1是由UC3854A/B控制的有源功率因数校正电路。

  该电路由两部分组成。UC3854A/B及外围元器件构成控制部分,实现对网侧输入电流和输出电压的控制。功率部分由L2,Cs,S等元器件构成Boost升压电路。开关管S选择西门康公司的SKM75GBl23D模块,其工作频率选在35 kHz。升压电感L2为2mH/20A。C5采用两个450V/470μF的电解电容并联。为了提高电路在功率较小时的效率,所设计的PFC电路在轻载时不进行功率因数校正,当负载较大时功率因数校正电路自动投入使用。此部分控制由图1中的比较器部分来实现。R10及R11是负载检测电阻。当负载较轻时,R10及R11上检测的信号输入给比较器,使其输出端为低电平,D5导通,给ENA(使能端)低电平使UC3854A/B封锁。在负载较大时ENA为高电平才让UC3854A/B工作。D6接到SS(软启动端),在负载轻时D6导通,使SS为低电平;当负载增大要求UC3854A/B工作时,SS端电位从零缓慢升高,控制输出脉冲占空比慢慢增大实现软启动。

  2 主电路及控制电路

  2.1 主电路

  反激式电源一般用在100w以下的电路,而本电源设计最大功率达到300w,显然不适合。在功率较大的高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等。其中推挽电路用的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有6个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但需要的开关器件多(4个),驱动电路复杂;半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为主电路拓扑图。

  图2中S1、S2、C1、C2和主变压器T1构成了半桥DC/DC变换电路。MOSFET采用11NC380。电路的工作频率为80 kHz。变压器采用E55的铁氧体磁芯,无须加气隙。绕制时采用“三段式”绕法,以减小漏感。R1和R2用以保证电容分压均匀,R3、C3和R4、C4为MOS管两端的吸收电路。C5为隔直电容,用来阻断与不平衡伏秒值成正比的直流分量,平衡开关管每次不相等的伏秒值。C5采用优质CBB无感电容。Ct是电流互感器,作为电流控制时取样用。D3、D4采用快恢复二极管,经过L1和C6、C7平波滤波后输出OUT2给控制芯片供电,Rs、R6则是反馈电压的采样电阻。主变压器的输出OUT3为高频低压交流电。如图2所示,反馈电压和输出电压同一绕组,样,可以在负载变化时最大限度地保证输出电压的稳定。后级可接一个或多个多路输出的变压器,然后通过整流电路整流,这样既能保证每路输出都是独立的,又可以得到任意大小的电压。故可满足DSP等需要多路不同电压供电且精度较高的要求。